

myCobot 通讯协议与 API

1. 上层 API 指令解析

1) Set Servo Encoder (byte servo_no, int servo_encoder, int servo_sp);

控制指定关节,以指定速度转动至指定电位值:

关节序号 = servo_no, 取值范围 1-6;

指定电位值 = servo_encoder, 取值范围 0-4096;

指定速度 = servo_sp, 取值范围 0-4000,;

2) Set Angle (byte servo_no, int angle, int sp);

控制指定关节,以指定速度旋转到对应角度:

关节序号 = servo_no, 取值范围 1-6;

指定角度 = angle, 取值范围 -170°— + 170°;

指定速度 = sp, 取值范围 0-4000;

3) Set Servos Encoder (int servo_encoder_1, int servo_encoder_2, int servo_encoder_3, int servo_encoder_4, int servo_encoder_5, int servo_encoder_6, int servo_sp);

指定六个关节舵机以指定速度转动至指定电位值:

- 1号舵机电位值 = servo encoder 1, 取值范围 0 4096;
- 2号舵机电位值 = servo_encoder_2, 取值范围 0 4096;
- 3号舵机电位值 = servo_encoder_3, 取值范围 0-4096;
- 4号舵机电位值 = servo_encoder_4, 取值范围 0 4096;
- 5号舵机电位值 = servo encoder 5, 取值范围 0 4096;
- 6号舵机电位值 = servo_encoder_6, 取值范围 0 4096;

指定速度 = servo sp, 取值范围 0-4000;

4) Calibrate Servo (byte servo_no);

设定当前电位值为舵机角度零点:

关节舵机编号 = servo no;

5) Set Servo Data (byte servo_no, byte servo_state, byte servo_data);

设定关节舵机的相关参数,可修改参数包括: PID、舵机指示灯、最小启动力:

指定关节舵机序号 = servo_no, 取值范围 1-6;

可修改参数地址 = servo_state, 如表 1-1;

可修改参数值 = servo_data, 如表 1-1;

表 1-1

地址	功能	取值范围	初始值值	取值解析
20	LED 报警条件	0-254	0	对应位设置 1 为开启闪灯报警
				对应位设置 0 为关闭闪灯报警
21	位置环 P 比例系数	0-254	123 关节取值 8	控制电机的比例系数
			456 取值 5	
22	位置环 D 微分系数	0-254	123 关节取值 20	控制电机的微分系数
			456 关节取值 13	
23	位置环 积分系数	0-254	0	控制电机的积分系数
24	最小启动力	0-1000	0	设置舵机的最小输出启动扭矩,设
				1000 = 100% * 堵转扭力

6) Release All Servos();

控制舵机扭力输出为 0, 使机械臂处于卸力状态;

7) Get Angle Encoder (byte joint_no);

读取关节舵机当前的电位值:

关节舵机序号 = joint_no;

8) Get Angle (byte joint_no);

获取当前舵机的角度值:

关节舵机序号 = joint_no;

9) Set RGB (byte R, byte G, byte B);

设定 atom 屏幕的 RGB 灯的颜色:

红色光对应参数值 = R, 取值范围 0x00 - 0xFF;

绿色光对应参数值 = G, 取值范围 0x00 - 0xFF;

蓝色光对应参数值 = B, 取值范围 0x00 - 0xFF;

10) Set Color(byte color);

设定 atom 屏幕的 RGB 灯的颜色:

状态值取值 = color, 取值范围如下表:

取值	0	1	2	3	4
颜色	红色	绿色	蓝色	黄色	彩色

11) Set Atom Pin Mode (byte pin, byte mode);

设置 atom 指定引脚的输入输出状态:

指定引脚序号 = pin;

指定状态值 = mode, 取值 1 位输出、0 为输入;

12) Set Atom Digital Write (byte pin, byte data);

设置 atmo 指定引脚输出的状态值:

指定引脚序号 = pin;

指定状态值 = data;

13) Check Header();

检查接收到的数据头文件是否为指定数据,是则处理数据,否则继续读取;

14) rFlush Serial();

读取当前串口接收区缓存;

2. 底层通讯数据结构

1) 串口总线说明

总线接口: Serial2

波特率: 9600, 19200, 57600, 115200, 1000000(默认)

数据位: 8 奇偶校验: 无 停止位: 1

2) 命令帧说明及单一指令解析

主机 Basic 向从机发送数据,从基接收到数据后进行解析,如包含返回值的指令,从机会在 0.5s 内返回给主机。

类型	数据描述	数据长度	说明
帧命令	头字节 0	1	帧头识别,0XFA
	头字节 1	1	帧头识别,0XFA
	数据长度字节	1	不同指令对应不同长度数据
	命令字节	1	视不同命令而定
帧数据	数据	0-16	命令附带数据,视不同命令而定
	结束字节	1	停止位,0XFE

3) 单一指令解析

A. 控制指定关节,以指定速度转动至指定电位值

数据域	说明	数据
Data[0]	识别帧	0XFA
Data[1]	识别帧	0XFA
Data[2]	数据长度帧	0X07
Data[3]	指令帧	0X20
Data[4]	关节舵机 ID	Servo_no
Data[5]	位置低字节	Angle_low
Data[6]	位置高字节	Angle_high
Data[7]	速度低字节	Speed_low
Data[8]	速度高字节	Speed_high
Data[9]	结束帧	0XFE

B. 设定指定关节舵机位置电位值为 2048, 角度为 0°

数据域	说明	数据
Data[0]	识别帧	0XFA
Data[1]	识别帧	0XFA
Data[2]	数据长度帧	0X03
Data[3]	指令帧	0X25
Data[4]	关节舵机 ID	Servo_no
Data[5]	结束帧	0XFE

C. 设定制定关节舵机的参数

数据域	说明	数据
Data[0]	识别帧	0XFA
Data[1]	识别帧	0XFA
Data[2]	数据长度帧	0X05
Data[3]	指令帧	0X24
Data[4]	关节舵机 ID	Servo_no
Data[5]	位置低字节	Servo_state
Data[6]	位置高字节	Servo_data
Data[7]	结束帧	0XFE

D. 读取制定关节舵机的电位值

数据域	说明	数据	
Data[0]	识别帧	0XFA	
Data[1]	识别帧	0XFA	
Data[2]	数据长度帧	0X07	
Data[3]	指令帧	0X20	
Data[4]	关节舵机 ID	Servo_no	
Data[5]	结束帧	0XFE	

从机返回数据结构

数据域	说明	数据
Data[0]	识别帧	0XFA
Data[1]	识别帧	0XFA
Data[2]	关节舵机 ID	Servo_no
Data[3]	位置低字节	Angle_low
Data[4]	位置高字节	Angle_high
Data[5]	结束帧	0XFE

E. 设定 atom 的显示屏 RGB 灯颜色

数据域	说明	数据
Data[0]	识别帧	0XFA
Data[1]	识别帧	0XFA
Data[2]	数据长度帧	0X05
Data[3]	指令帧	0X33
Data[4]	R	R
Data[5]	G	G
Data[6]	В	В
Data[7]	结束帧	0XFE

F. 设定 Atom 的引脚输入输出状态

数据域	说明	数据
Data[0]	识别帧	0XFA
Data[1]	识别帧	0XFA
Data[2]	数据长度帧	0X04
Data[3]	指令帧	0X33
Data[4]	引脚序号	Pin
Data[5]	输入输出状态	Mode
Data[6]	结束帧	0XFE

G. 设定 Atom 的引脚输出状态值

30C A55104 (III—1945 III		
数据域	说明	数据
Data[0]	识别帧	0XFA
Data[1]	识别帧	0XFA
Data[2]	数据长度帧	0X04
Data[3]	指令帧	0X33
Data[4]	引脚序号	Pin
Data[5]	输出状态	Data
Data[6]	结束帧	0XFE